Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes
نویسندگان
چکیده
Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV. It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. We also show noneclipse significant negative charging events on the Van Allen Probes.
منابع مشابه
The Van Allen Probes Engineering Radiation Monitor: Mission Radiation Environment and Effects
The engineering radiation monitor (ERM) measures dose, dose rate, and charging currents on the Van Allen Probes mission to study the dynamics of Earth’s Van Allen radiation belts. Measurements from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude, and a comparison of measured cum...
متن کاملEffects of Evolving Surface Contamination on Spacecraft Charging
The effects of evolving surface contamination on spacecraft charging have been investigated through (i) ground-based measurements of the change in electron emission properties of a conducting surface undergoing contamination and (ii) modeling of the charging of such surfaces using the NASCAP code. Specifically, we studied a Au surface as adsorbed species were removed and a very thin disordered ...
متن کاملCharging of mirror surfaces in space
[1] Spacecraft often charge to negative potentials of several kilovolts in eclipse at geosynchronous altitudes. We suggest that optical mirrors at geosynchronous altitudes will charge in sunlight as if in eclipse. Modern mirrors can attain very high reflectance, the reflected light being nearly as intense as the incoming light. With high reflectance, the sunlight photon energy imparted to mirro...
متن کاملExperiments In Charge Control at Geosynchronous Orbit - ATS-5 and ATS-6
INTRODUCTION Nonzero spacecraft potentials have been noted since the beginning of satellite flights. Large negative potentials (hundreds to thousands of volts) were first observed on Applied Technology Satellite 5 (ATS-5) in eclipse. These were explained as the natural result of a balance of the ambient electron and ion currents with associated secondary electron currents. In sunlight, photoemi...
متن کاملDesign of Sliding Mode Attitude Control for Communication Spacecraft
Control problem of a spacecraft is an important topic in automatic control engineering. A body orbiting the Earth in geosynchronous orbit has instabilities in attitude dynamics and disturbances caused by the Earth, the Moon, the Sun and other bodies in space. These effects force the body to lose initial orbit and attitude. Here the control system takes important part of spacecraft missions wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2016